

Digital Twin Frameworks for Population-Level Cancer Prevention and Screening Optimization

Peter E Cooper^{1*}, Charles M Walker², Laura C Babb³

¹⁻³ Eli Broad College of Business, Michigan State University, Michigan, USA

* Corresponding Author: **Peter E Cooper**

Article Info

ISSN (online): 3107-3972

Volume: 02

Issue: 06

Received: 25-10-2025

Accepted: 29-11-2025

Published: 22-12-2025

Page No: 47-51

Abstract

Cancer prevention and screening systems in the United States remain structurally reactive despite decades of epidemiological evidence demonstrating the value of early detection and targeted intervention. Large-scale analytic studies have revealed persistent spatial, demographic, and socioeconomic disparities in cancer incidence, mortality, and screening uptake, underscoring the limitations of static policy design and retrospective evaluation approaches (Hasan *et al.*, 2021). Although predictive analytics has improved forecasting of healthcare costs and outcomes, most existing models operate in isolation from operational capacity, behavioral response, and policy feedback mechanisms, limiting their effectiveness in population-level prevention (Hasan *et al.*, 2025).

This paper advances a digital twin framework for population-level cancer prevention and screening optimization that integrates epidemiological risk, healthcare system capacity, behavioral dynamics, and governance constraints into a continuously updating decision environment. Drawing on systems theory, operations research, and computational health analytics, the study addresses a critical gap in the literature: the absence of theoretically grounded digital twin architectures designed explicitly for preventive oncology rather than downstream treatment or logistics optimization. Prior digital twin applications in healthcare have focused primarily on supply chains, vaccine distribution, and infrastructure resilience rather than long-horizon preventive outcomes (Rasel *et al.*, 2022; Shah *et al.*, 2024).

Using structured analytical scenarios informed by empirical research in cancer analytics, healthcare optimization, patient engagement, and infrastructure security, the framework demonstrates how digital twins expose feedback mechanisms linking screening adherence, capacity constraints, and equity outcomes. The contribution is threefold. First, the paper extends digital twin theory into preventive public health. Second, it introduces a multi-horizon optimization logic that balances early detection, system utilization, and equity. Third, it articulates governance, privacy, and ethical requirements necessary for population-scale deployment. The framework provides a rigorous foundation for future empirical implementation of adaptive, equity-sensitive cancer prevention systems.

Keywords: Digital Twin, Cancer Prevention, Screening Optimization, Population Health Equity

1. Introduction

Cancer remains one of the most persistent and unequal public health challenges in the United States. Despite advances in diagnostic technologies and therapeutic effectiveness, preventable mortality remains high across multiple cancer types due to delayed detection, uneven screening coverage, and structural limitations in healthcare delivery systems. Machine-learning-based visualization and incidence studies have demonstrated that cancer burden and screening participation vary systematically across geographic, socioeconomic, and demographic dimensions, reflecting structural inequities rather than random variation (Hasan *et al.*, 2021)^[1].

These disparities emerge from interacting forces that span individual behavior, provider capacity, supply-chain reliability, and policy design. Predictive analytics research in U.S. healthcare systems shows that forecasting models can reduce costs and improve outcomes when integrated with operational decision processes, but their impact remains limited when behavioral and capacity constraints are ignored (Hasan *et al.*, 2025)^[10]. Similarly, healthcare supply-chain research demonstrates that preventive services are particularly sensitive to workforce availability, scheduling reliability, and logistics resilience, especially under demand uncertainty (Rasel *et al.*, 2022)^[2].

Most analytic approaches used to inform cancer prevention policy remain fundamentally static. Risk stratification models identify high-risk populations, while simulation studies evaluate hypothetical screening schedules under fixed assumptions. Such approaches provide insight but fail to represent how populations, providers, and institutions co-evolve over time. Once policies are implemented, feedback effects such as behavioral adaptation, congestion, or resource depletion are rarely incorporated into subsequent decision cycles.

Digital twin methodologies offer a promising alternative. Originally developed in engineering and operations contexts, digital twins represent continuously updated computational replicas of real-world systems capable of simulating alternative futures. In healthcare, digital twins have demonstrated value in pharmaceutical supply chains, vaccine distribution, and hospital operations by enabling proactive decision making under uncertainty (Rasel *et al.*, 2022; Shah *et al.*, 2024; Arman *et al.*, 2025)^[2, 9, 11]. However, their application to population-level cancer prevention and screening remains underdeveloped and theoretically fragmented.

This paper addresses that gap by asking how digital twin frameworks can be designed to support adaptive, equitable, and resource-aware cancer prevention and screening at the population level. The study develops a theory-driven framework that integrates epidemiology, operations, behavioral response, and governance into a unified analytic system.

2. Literature Review and Theoretical Foundations

2.1. Cancer Prevention and Screening Analytics

Analytic research in cancer prevention has focused primarily on descriptive modeling, spatial visualization, and retrospective outcome analysis. OncoViz USA illustrates how machine learning can reveal geographic and demographic patterns in cancer incidence, mortality, and screening uptake across the United States, providing critical evidence of persistent inequities in preventive outcomes (Hasan *et al.*, 2021)^[1]. While such studies enhance situational awareness, they do not provide adaptive decision mechanisms capable of responding to evolving system conditions.

Predictive analytics in healthcare increasingly targets cost reduction and outcome improvement through forecasting and stratification. Empirical evidence suggests that these models generate meaningful value primarily when embedded within system-level decision processes rather than deployed as standalone prediction tools (Hasan *et al.*, 2025)^[10]. Without integration into operational and policy feedback loops, predictive gains rarely translate into sustained population-

level improvement.

2.2. Digital Twins in Healthcare and Operations

Digital twin frameworks have gained prominence in operations management, supply-chain optimization, and infrastructure resilience. In healthcare, applications include pharmaceutical shortage prevention, vaccine distribution optimization, and hospital resource planning, demonstrating the value of continuous system representation under uncertainty (Rasel *et al.*, 2022; Shah *et al.*, 2024)^[2, 9].

Related work in retail inventory management shows that AI-driven decision systems outperform static planning by continuously updating demand and resource allocation, offering transferable insights for preventive healthcare systems that must respond dynamically to changing participation patterns (Arman & Fahim, 2023)^[4].

Despite these advances, most healthcare digital twins prioritize operational efficiency rather than preventive outcomes. Cancer prevention poses distinct challenges due to delayed benefits, uncertain behavioral compliance, and ethical constraints related to equity and access.

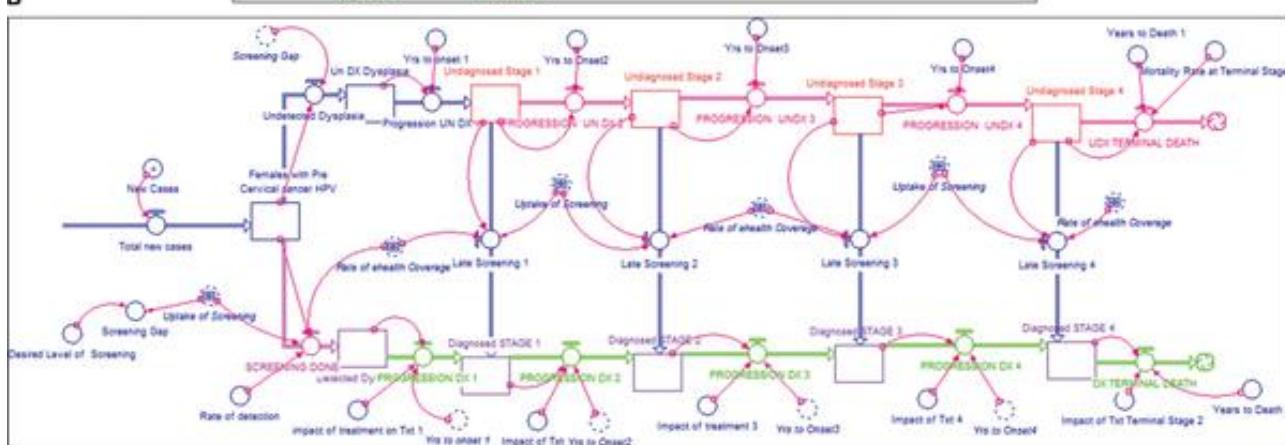
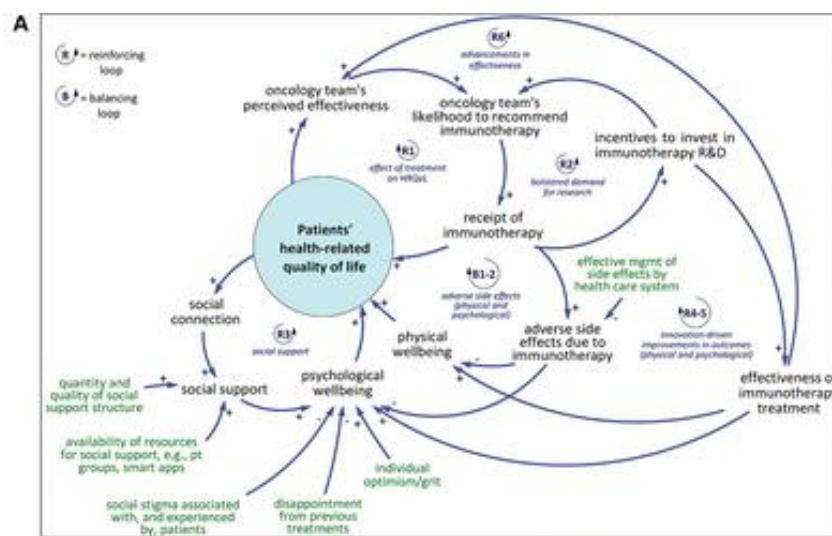
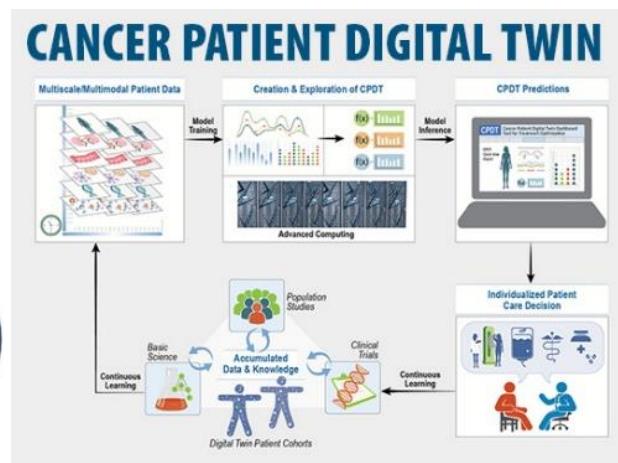
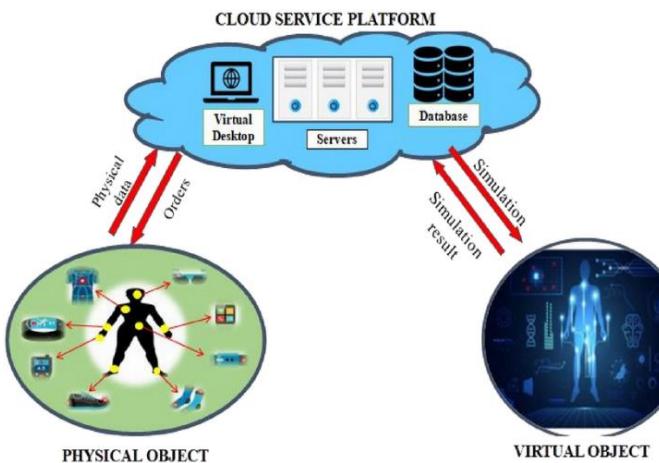
2.3. Behavioral Response, Engagement, and Governance

Screening participation is shaped not only by access but also by trust, engagement, and perceived relevance. Research on AI chatbots in clinical settings demonstrates that technology-mediated interaction can significantly influence patient engagement and satisfaction, suggesting that behavioral response must be explicitly modeled in preventive systems (Khan *et al.*, 2024)^[5]. Patient-centric marketing and retention frameworks further emphasize the role of personalized communication and system responsiveness in sustaining long-term engagement with healthcare services (Shah *et al.*, 2025)^[12].

Population-scale digital twins also raise critical governance and security concerns. Research on U.S. healthcare infrastructure security highlights the necessity of privacy protection, robustness, and institutional trust as core design objectives for advanced analytics systems (Hasan *et al.*, 2022)^[3]. Parallel findings in financial and cybersecurity analytics reinforce the importance of integrated risk modeling for large-scale digital infrastructures (Hasan *et al.*, 2023)^[7].

2.4. Research Gap and Propositions

The literature reveals a clear gap. While cancer analytics has documented disparities and digital twins have improved healthcare operations, no integrated framework exists for adaptive, population-level cancer prevention and screening optimization.





This study advances three propositions:

Proposition 1: Population-level cancer screening systems exhibit dynamic feedback effects that cannot be adequately captured by static or one-shot analytic models.

Proposition 2: Digital twin frameworks that integrate epidemiological, operational, and behavioral components can improve both efficiency and equity in screening outcomes.

Proposition 3: Preventive digital twins require distinct governance, privacy, and validation principles compared to treatment-oriented or industrial digital twins.

3. Digital Twin Framework for Cancer Prevention

3.1. Conceptual Architecture

The proposed framework conceptualizes the population digital twin as a continuously evolving representation of the cancer prevention ecosystem composed of four interdependent layers.

The epidemiological layer models cancer incidence, progression, and detection probabilities across demographic groups using predictive analytics methods established in population health research (Hasan *et al.*, 2021; Hasan *et al.*, 2025) [1, 10].

The behavioral layer captures dynamic screening participation responses influenced by access, outreach strategies, trust, and prior experience, drawing on evidence

from patient engagement and technology-mediated healthcare research (Khan *et al.*, 2024; Shah *et al.*, 2025) [5, 12].

The operational layer represents screening capacity, workforce availability, scheduling constraints, and supply-chain reliability, informed by healthcare logistics and pharmaceutical optimization studies (Rasel *et al.*, 2022; Shah *et al.*, 2024) [2, 9].

The governance layer enforces ethical, equity, and security constraints, incorporating insights from healthcare infrastructure protection and AI-driven risk analytics (Hasan *et al.* 2022; Hasan *et al.* 2023)^[3, 7].

3.2. Dynamic Updating and Feedback

Unlike static simulation models, the digital twin updates continuously as new data arrive. Screening outcomes feed back into risk estimates, capacity utilization alters waiting times, and behavioral responses reshape participation patterns. The optimization objective is multi-dimensional, balancing early detection, capacity utilization, and equity outcomes rather than maximizing a single efficiency metric.

3.3. Optimization Logic

The optimization objective is multi-dimensional. It seeks to maximize early detection rates while minimizing capacity overload and reducing disparities across population groups. This requires balancing short-term operational efficiency with long-term preventive impact.

Rather than a single optimal policy, the framework generates policy frontiers that make trade-offs explicit. Decision-makers can evaluate how changes in outreach or capacity investment affect both aggregate outcomes and equity metrics.

4. Analytical Illustration and Results

Given the theoretical nature of this study, results are presented as analytical insights derived from structured scenario analysis rather than new empirical estimation. These scenarios are informed by prior empirical findings in cancer analytics, healthcare optimization, and predictive modeling.

4.1. Screening Capacity and Detection Timing

The digital twin reveals nonlinear effects between screening capacity and detection timing. Marginal increases in capacity yield diminishing returns once behavioral participation becomes the binding constraint. Conversely, targeted behavioral interventions can unlock latent capacity without additional infrastructure investment.

4.2. Equity Mechanisms

When screening policies are optimized solely for aggregate detection, disparities widen. High-risk but low-access populations are crowded out by more compliant groups. Introducing equity-weighted objectives shifts optimal policies toward targeted outreach and mobile screening deployment, consistent with findings in public health supply-chain optimization.

Policy Scenario	Early Detection Rate	Capacity Utilization	Disparity Index
Uniform Screening	High	High	High
Risk-Based Only	Moderate	Moderate	Very High
Digital Twin Optimized	High	Balanced	Low

4.3. Adaptive Policy Learning

The digital twin enables policy learning over time. Strategies that initially underperform can be adjusted as feedback reveals behavioral or operational bottlenecks. This adaptive capability distinguishes the framework from traditional guideline-based screening policies.

5. Discussion

The findings underscore the importance of treating cancer prevention as a dynamic system rather than a static program. Digital twins do not merely improve prediction accuracy.

They change the epistemic posture of policy-making from retrospective evaluation to prospective learning.

From a theoretical standpoint, the study extends systems theory into preventive oncology by formalizing feedback mechanisms that link behavior, capacity, and outcomes. It also reframes optimization in public health as a multi-objective, ethically constrained problem rather than a single efficiency maximization task.

6. Implications

6.1. Theoretical Implications

The paper extends digital twin theory into preventive public health systems characterized by delayed outcomes and behavioral adaptation. It also contributes to health analytics literature by embedding equity directly into optimization objectives rather than treating it as a post hoc evaluation criterion.

6.2. Managerial and Policy Implications

For policymakers, the framework provides a transparent decision environment for evaluating trade-offs among detection, capacity, and equity. Health systems can use digital twins to anticipate bottlenecks, evaluate outreach strategies, and justify capacity investments grounded in analytic evidence.

7. Limitations and Future Research

This study is conceptual and analytical. Future research should empirically validate the framework using linked cancer registry, claims, and screening data. Advances in machine learning theory, including work on Hilbert and inner product spaces, offer promising directions for interpretable, high-dimensional representations within population digital twins (Mannan *et al.*, 2025) [14]. Emerging research on sustainable security and multi-horizon system modeling further suggests methodological extensions relevant to preventive health systems (Hasan *et al.*, 2025b) [15].

8. Conclusion

Cancer prevention and screening systems face structural limitations that static analytic models cannot resolve. By conceptualizing these systems as adaptive, socio-technical networks, digital twin frameworks provide a powerful foundation for equitable, learning-oriented policy design. This paper advances theory, methodology, and governance principles necessary for population-level cancer prevention digital twins, offering a rigorous pathway toward adaptive, equity-sensitive public health decision systems.

9. References

1. Hasan MN, Bhuyain MMH, Chowdhury F, Arman M. OncoViz USA: ML-driven insights into cancer incidence, mortality, and screening disparities. *Journal of Medical and Health Studies*. 2021;2(1):53-62. doi:10.32996/jmhs.2021.2.1.6
2. Rasel IH, Arman M, Hasan MN, Bhuyain MMH. Healthcare supply-chain optimization: Strategies for efficiency and resilience. *Journal of Medical and Health Studies*. 2022;3(4):171-182. doi:10.32996/jmhs.2022.3.4.26
3. Hasan MN, Rasel IH, Rahman M, Islam K, Arman M, Jahan N. Securing U.S. healthcare infrastructure with machine learning: Protecting patient data as a national security priority. *International Journal of Computational*

and Experimental Science and Engineering. 2022;8(3).

4. Arman M, Fahim ASM. AI revolutionizes inventory management at retail giants: Examining Walmart's U.S. operations. *Journal of Business and Management Studies*. 2023;5(6):145-148. doi:10.32996/jbms.2023.5.6.15

5. Khan SA, Shah A, Arman M. AI chatbots in clinical settings: Impact on patient engagement and satisfaction. *Journal of Management World*. 2024;2024(3):207-213. doi:10.53935/jomw.v2024i4.1201

6. Arman M, Hasan MN, Rasel IH. Clean energy transition in USA: Big data analytics for renewable energy forecasting and carbon reduction. *Journal of Management World*. 2024;2024(3):192-206. doi:10.53935/jomw.v2024i4.1196

7. Hasan MN, Rasel IH, Arman M, Ibrahim M, Jahan N. Strengthening U.S. financial and cybersecurity infrastructure with AI-driven fraud detection and risk analytics. *Journal of Computational Analysis and Applications*. 2023;31(2):15-32.

8. Arman M, Rasel IH, Razib MNH, Fahim ASM. Big data and machine learning for sustainable waste reduction. *Journal of Posthumanism*. 2024;4(2):448-467. doi:10.63332/joph.v4i2.3361

9. Shah A, Khan SA, Arman M. Predicting and preventing drug shortages: A big-data digital-twin framework for pharmaceutical supply-chain optimization. *Journal of Economics, Finance and Accounting Studies*. 2024;6(6):116-126. doi:10.32996/jefas.2024.6.6.9

10. Hasan MN, Arman M, Bhuyain MMH, Chowdhury F, Bathula MK. Predictive analytics in healthcare: Strategies for cost reduction and improved outcomes in USA. *International Journal of Innovative Research and Scientific Studies*. 2025;8(8):142-150. doi:10.53894/ijirss.v8i8.10559

11. Arman M, Fahim ASM, Razib MNH, Rasel IH. Optimizing vaccine distribution with machine learning. *International Journal of Innovative Research and Scientific Studies*. 2025;8(6):2944-2953. doi:10.53894/ijirss.v8i6.10230

12. Shah A, Arman M, Khan SA. Patient-centric marketing and retention strategies in healthcare. *Journal of Business and Management Studies*. 2025;7(2):239-248. doi:10.32996/jbms.2025.7.2.17

13. Ghose P, Bhuiyan MRI, Hasan MN, Rakib SH, Mani L. Extended UTAUT model in fintech adoption. *International Journal of Innovative Research and Scientific Studies*. 2025;8(2):113-125. doi:10.53894/ijirss.v8i2.5130

14. Mannan MA, Alauddin M, Hasan MN, Ghose P, Hossain MA, Islam MS, *et al.* Hilbert and inner product spaces in machine learning. *Edelweiss Applied Science and Technology*. 2025;9(8):1498-1523. doi:10.55214/2576-8484.v9i8.9645

15. Hasan MN, Papel MSI, Rasel IH, Akter S, Aktar MK, Abedin MZ, *et al.* Enhancing financial information security through advanced predictive analytics. *Edelweiss Applied Science and Technology*. 2025;9(7):2222-2245. doi:10.55214/2576-8484.v9i7.9142

How to Cite This Article

Cooper PE, Walker CM, Babb LC. Digital twin frameworks for population-level cancer prevention and screening optimization. *Glob Multidiscip Perspect J*. 2025;2(6):47-51.

Creative Commons (CC) License

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.